FORT COBB RESERVOIR 1993 SEDIMENTATION SURVEY

U.S. Department of the Interior Bureau of Reclamation

7-2090 (4-81) Bureau of Reclamation TE	CHNICAL REPORT STAND	ARD TITLE PAGE
1. REPORT NO. 2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALC	DG NO.
4. TITLE AND SUBTITLE	5. REPORT DATE May 1994	
Fort Cobb Reservoir	6. PERFORMING ORGAI	
1993 Sedimentation Survey	D-5753	
7. AUTHOR(S) Ronald L. Ferrari	8. PERFORMING ORGAI REPORT NO.	NIZATION
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. WORK UNIT NO.	
Bureau of Reclamation	11. CONTRACT OR GRA	NT NO.
Denver Office		
Denver CO 80225	13. TYPE OF REPORT A	ND PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS	DIBR	
	14. SPONSORING AGEN $D-5753$	ICY CODE
15. SUPPLEMENTARY NOTES		
Microfiche and hard copy available at the Denver	Office, Denver, Colorado	
report also describes the surveying procedures an and provides data for future surveys. The prin collection of data to compute the area-capacity Reservoir.	mary purpose of the 1993	survey was the
As of April 1993, the survey determined that the acre-feet and a surface area of 5,882 acres at spill March 1959, the reservoir has accumulated a ver- spillway crest elevation 1354.8. This volume rep and an average annual loss of 204.9 acre-feet for May 1993.	way crest elevation 1354.8. olume of 6,966 acre-feet of resents a 4.88-percent loss	Since closure in sediment below in total capacity
 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS reservoir area and capacity/ sed sediment distribution/ contour area/ reservoir area/ b. IDENTIFIERS Fort Cobb Reservoir/ Oklahoma-T Master Conservancy District/ c. COSATI Field/Group 13/B COWRR: 1302.60 	sedimentation survey/ exas Projects Office/ Fort C	
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS	21. NO. OF PAGES
	(THIS REPORT) UNCLASSIFIED	33
	20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED	22. PRICE

FORT COBB RESERVOIR

1993 SEDIMENTATION SURVEY

by

Ronald L. Ferrari

Sedimentation Section Surface Water Branch Division of Earth Sciences Denver Office Denver, Colorado

May 1994

ACKNOWLEDGMENTS

The Bureau of Reclamation's Sedimentation Section prepared and published this report. The hydrographic survey was supervised by Ronald Ferrari, Hydraulic Engineer, and assisted by Charles Feuerboun and Carol Newcomb of the Oklahoma-Texas Projects Office and personnel from the FCRMCD (Fort Cobb Reservoir Master Conservancy District of Anadarko, Oklahoma). The preliminary field work of locating and flagging the existing sediment range end markers and surveying the above-water portions of the sediment range lines was performed by Charles Feuerboun and Carol Newcomb of the Oklahoma-Texas Projects Office and personnel from the FCRMCD. Ronald Ferrari completed the data processing, sediment computations, area-capacity tables, and the report. Gerald Schultz assisted in the processing of the collected range line data.

U.S. Department of the Interior Mission Statement

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

The information contained in this report was developed for the Bureau of Reclamation; no warranty as to the accuracy, usefulness, or completeness is expressed or implied.

CONTENTS

Page

~

~

Introduction	1
Summary and conclusions	2
Surveys	2
Survey history	2
1993 resurvey	2
Reservoir area and capacity	3
Development of 1993 contour areas	
1993 revised storage capacity	4
Sediment analyses	4
Sedimentation accumulation	4
Sedimentation summary	5
Reservoir sediment distribution	5
Longitudinal distribution	
Lateral distribution	5
References	6

TABLES

Table

-

1	Reservoir sediment data summary (page 1 of 2)	. 7	7
1	Reservoir sediment data summary (page 2 of 2)	. 8	3
2	Summary of 1993 survey results	. ?	Э
3	Segmented reservoir areas	1(0

FIGURES

Figure -

1	Fort Cobb Reservoir location map	11
2	Fort Cobb Dam, plan and section	12
3	Fort Cobb Reservoir range location map	13
4	Width adjustment method for revising contour areas	15
5	Area and capacity curves - Fort Cobb Reservoir	16
6	Longitudinal profile - Pond (Cobb) Creek	17
7	Longitudinal profile - Willow Creek	18
8	Sediment Range 1 - Pond Creek	
9	Sediment Range 2 - Pond Creek	20
10	Sediment Range 3 - Pond Creek	21
11		
12	Sediment Range 5 - Pond Creek	23
13	Sediment Range 6 - Pond Creek	24
	Sediment Range 7 - Pond Creek	
15	Sediment Range 8 - Pond Creek	26
16	Sediment Range 20 - Willow Creek	27
17	Sediment Range 21 - Willow Creek	28
18	Sediment Range 22 - Willow Creek	29
	Sediment Range 30 - Lake Creek	
	Sediment Range 31 - Lake Creek	
	Sediment Range 40 - Camp Creek	

-

-

٠

.

•

.

•

.

INTRODUCTION

Fort Cobb Dam and Reservoir are major features of the Washita Basin Projects in southwestern Oklahoma. Other principal features are Foss Dam and Reservoir. The project supplies municipal and industrial water and provides flood control, fish and wildlife, and recreation benefits.

Fort Cobb Dam and reservoir are located in Caddo County, about 22 miles northwest of Anadarko and 5 miles north of Fort Cobb, Oklahoma. The dam is on Pond (Cobb) Creek, roughly 5 miles above the confluence of Cobb Creek with the Washita River (fig. 1). The dam and reservoir are operated by the FCRMCD (Fort Cobb Reservoir Master Conservancy District).

Fort Cobb Dam was constructed during 1958 and 1959, and storage began on March 30, 1959. The conservation pool filled in June 1962, which is when normal operation began. The dam (fig. 2) is a nearly homogeneous, rolled earthfill structure 122 feet above the Pond Creek streambed. The dam crest has a maximum elevation of 1,380 feet mean sea level, a crest length of 9,900 feet, and a crest width of 30 feet.^{*}

The spillway is an ungated morning-glory type located on the left abutment and has a capacity of 3,050 cubic feet per second at a water surface elevation of 1374.4 feet. A concrete inlet feeds into a 9.5-foot-diameter concrete conduit which passes through the abutment. The conduit empties into a concrete chute which feeds a stilling basin downstream from the dam.

The outlet works consists of a river outlet works (with a capacity of 2,570 cubic feet per second at water surface elevation 1374.4) and an adjacent municipal outlet works on the right abutment. The river outlet works, which has a crest elevation of 1300 feet, has a concrete intake structure fitted with trashracks. The intake structure feeds into a 9.0-foot-diameter concrete conduit which leads through the abutment to a gate chamber located about 60 feet upstream from centerline. The gate chamber contains two high-pressure regulating gates and two emergency gates which control flow into a concrete conduit which passes through the downstream portion of the dam into a concrete chute and stilling basin.

The upstream portion of the municipal outlet works consists of two 26-inch-diameter steel pipes encased in concrete which lead from the river outlet works intake structure to the above-mentioned gate chamber. The gate chamber contains two gate valves which control flow into a 26-inch-diameter steel pipe passing through the downstream portion of the dam. The steel pipe, contained in a 7.0-foot-high by 5.2-foot-wide concrete adit, continues through the control house at the dam toe to a stilling well at the intake of the Anadarko aqueduct.

The reservoir length is 12.5 miles, summation of Pond, Willow, and Lake Creeks, and has an average width of 0.51 miles at reservoir pool elevation 1342.0. Average width is determined by dividing the surface area by the reservoir length at elevation 1342.0. Total drainage area above the dam is 317 square miles, of which 262 square miles contributes sediment inflow. The sediment contributing area is the total drainage area minus 51 square miles as identified by the Bureau of Reclamation as probably noncontributing during a 1956 flood study.

^{*} The definition of terms such as "structural height," "hydraulic height," etc., may be found in manuals such as Reclamation's *Design of Small Dams* and *Guide for Preparation of Standing Operating Procedures for Dams and Reservoirs*, or ASCE's *Nomenclature for Hydraulics*.

At the beginning of reservoir storage in March 1959, Fort Cobb Reservoir had a calculated surface area of 5,915 acres and a capacity of 143,740 acre-feet at elevation 1354.8.

SUMMARY AND CONCLUSIONS

This report presents the results of an investigation to monitor changes caused by sediment accumulations in Fort Cobb Reservoir after 34.0 years of reservoir operations. The report also describes the surveying procedures and equipment used in the 1993 investigation and provides data for future surveys. The primary purpose of the 1993 survey was the collection of data to compute the area-capacity relationships for operation of Fort Cobb Reservoir.

Tables 1 and 2 contain a summary of reservoir sediment data for the 1993 survey. The 1993 survey determined that the reservoir has a storage capacity of 135,898 acre-feet and a surface area of 5,882 acres at spillway crest elevation 1354.8. Since closure in March 1959, the reservoir has accumulated a volume of 6,966 acre-feet of sediment below elevation 1354.8. This volume represents a 4.88-percent loss in total capacity and an average annual loss of 204.9 acre-feet for the operation period of March 1959 through April 1993.

SURVEYS

Survey History

The original sediment ranges were surveyed by the Bureau of Reclamation prior to inundation of water behind Fort Cobb Reservoir dam and are referred to as the original, or 1959, data. Figure 3 illustrates the range line network for Fort Cobb Reservoir. The original surface areas for Fort Cobb Reservoir were determined by planimetering topographic maps of the reservoir area developed prior to inundation. The reservoir topography consists of 28 maps (No. 853-500-16 through 853-500-43) with a scale of 1 inch equals 400 feet and 5-foot contour intervals.

1993 Resurvey

The preliminary field work of locating and flagging the existing sediment range end markers and surveying the above-water portions of the sediment range lines was performed by the Oklahoma-Texas Projects Office and FCRMCD. The hydrographic survey was performed from March 31 through April 2, 1993 (reservoir elevation 1341.88 through 1342.08), using Reclamation's small boat bathymetric survey system. The small boat system consisted of a sonic depth recorder and reflector prism mounted on the boat. The distances from a known point, usually one of the range end markers, to the small boat were determined as the boat proceeded along the range line by an EDM (electronic distance measuring) instrument set up on shore aimed at the mounted reflector target. Range distances were communicated, by radio, from shore to the boat at preselected intervals and marked on the sonar charts as the boat proceeded across the reservoir. The boat was held on course as closely as possible by radio communication from the EDM operator to the survey boat. This system was used to collect the data for range lines 1 through 6, 20, and 21. The rest of the range lines were located above water and collected by the Oklahoma-Texas Projects Office using standard surveying procedures.

RESERVOIR AREA AND CAPACITY

Development of 1993 Contour Areas

For the purposes of the 1993 sedimentation analysis and to better represent storage changes, the reservoir was subdivided into segments using the range lines to delineate the limit of each segmental boundary. The segmental surface areas of the 5-foot contours for elevations 1280.0 through 1375.0 were digitized and summarized to determine the original reservoir surface areas. This method was used to determine the original surface area of the reservoir, but the resulting segmented areas could not be located for the 1993 study. For the 1993 analysis the Reclamation Service Center redigitized the segmental areas of the 5-foot contours using microfilmed copies of the original 1 inch equals 400 feet topographic maps. The total segmented areas for the digitized 5-foot contours compared fairly well with the original areas and required only minor adjustments to match the original total areas. Table 3 gives a summary of the areas by segments and elevations.

The 1993 reservoir surface areas were computed by the width adjustment method described by Blanton (1982) and illustrated on figure 4. The method entails computing the new segmented contour area, A_1 , between any two ranges by applying an adjustment factor to the original segmental contour area, A_0 . The computed adjustment factor for each segment was the ratio of the new average width to the original average width for both the upstream and downstream ranges at the specified contour elevation. These calculations were completed by Reclamation's computer program RESSED. The input data included the original and 1993 range line data along with the segmented areas for the specified contour elevation. The program computes the 1993 surface area for each segment at the given contour elevations. A comparison of simultaneous plots of original and 1993 range profiles indicated the lateral distribution of sediment at the different measured contour elevations. Where these plots indicate changes have occurred on the side slopes of the reservoir, a decision was made to determine whether the change was caused by survey inaccuracies or actual deposition or erosion. The adjustment factor was set to 1.0 if the measured change was judged to be caused by survey inaccuracy. Additional modifications to the calculated width adjustment factor were done to better represent the contour surface area changes. Because the original topography of Fort Cobb Reservoir had only 5-foot contours, obtaining a better representation of the sediment surface areas was deemed necessary. These sediment surface areas were developed by calculating the 1993 average bottom profile versus the original thalweg profile and transferring the location of the 1993 contour crossing to the original topography, and digitizing the resulting sediment surface areas. This procedure was done for the contour crossings that terminated within a segment.

The RESSED program output listed the revised areas for each segment and noted where judgement led to overriding the adjustment factors. The output also noted where the adjustment factors were overridden to reflect the digitized surface areas of the contours that terminated within the segments. The 1993 total reservoir surface area at a given contour was the summation of all segmental areas at that elevation. The 1993 total area computation results are listed in column 4 of table 2.

1993 Revised Storage Capacity

The storage-elevation relationships based on the 1993 underwater survey data were developed using Reclamation's area-capacity computer program ACAP (Reclamation, 1985). The 1993 surface areas resulting from the RESSED computations at 5-foot contour intervals from elevation 1290.0 through 1375.0 were used as the control parameters for computing reservoir capacity. The 1993 study only surveyed ranges that measured changes from contour elevations 1280.0 through 1370.0. The original surface area for the 1375.0 contour was used for capacity calculations because it was judged that the reservoir has not affected this contour area. The program computes an area at 0.01- to 1.0-foot area increments by linear interpolation between the given contour intervals. The program begins by testing the initial capacity equation over successive intervals to ensure that the equation fits within an allowable error limit, which was set at 0.000001 for Fort Cobb Reservoir. This capacity equation is then used over the full range of intervals fitting within this allowable error limit. For the first interval at which the initial allowable error limit is exceeded, a new capacity equation (integrated from the basic area curve over that interval) begins testing the fit until it also exceeds the error limit. Thus, the capacity curve is defined by a series of curves, each fitting a certain region of data. Final area equations are derived by differentiating the capacity equations, which are of second order polynomial form:

$$y = a + a_2 x + a_3 x^2$$

where:

y = capacity, x = elevation above a reference base, a = intercept, and a_2 and $a_3 =$ coefficients

Results of the 1993 Fort Cobb Reservoir area and capacity computations are listed in tables 1 and 2 and plotted on figure 5. A separate set of 1993 area and capacity tables was published for the 0.01-, 0.1-, and 1-foot elevation increments. The 1993 area and capacity computations results are listed in columns (4) and (5) of table 2. Column 2 in the table gives the original measured contour areas used in the original area and capacity computation, and column 3 gives the original capacity recomputed using ACAP. Both the original and 1993 area and capacity curves are plotted on figure 5 for a visual comparison of changes. The 1993 survey determined that the reservoir has a storage capacity of 135,898 acre-feet and a surface area of 5,882 acres at spillway crest elevation 1354.8.

SEDIMENT ANALYSES

Sedimentation Accumulation

Since storage began in March 1959, sediments have accumulated in Fort Cobb Reservoir to a estimated volume of 6,966 acre-feet below the spillway crest elevation of 1354.8. This volume represents a 4.88-percent loss in total capacity and an average annual accumulation rate of 204.9 acre-feet for the 34.0-year period of operation. The net sediment accumulation rate from the contributing basin was 0.782 acre-feet per square mile per year for the same period.

Sedimentation Summary

The results of the sediment data and volume computations for the 1993 survey are shown in table 1 and table 2. The data include a tabulation of incremental sediment inflow volume and sediment accumulation computed for the period between initial conditions and the 1993 resurvey. Table 1 includes information on the drainage basin, records of estimated inflow, reservoir operations, and reservoir storage.

RESERVOIR SEDIMENT DISTRIBUTION

Longitudinal Distribution

The distribution of sediment throughout the length of the reservoir is illustrated by plots of the thalweg profile representing the original and 1993 resurveyed profiles for the Pond and Willow Creeks as shown on figures 6 and 7. Thalweg elevations representing original and the resurveyed reservoir conditions were taken from the 1993 survey notes and large scale plots of the original range line data. Except for the possibility of some missed low points, the plotted profile should closely resemble actual channel bottom conditions during the original range survey completed prior to inundation of the reservoir. Except for some minor inaccuracies in sounding and being slightly off line, the bottom of the 1993 profiles should closely represent channel bottom conditions at the time of those resurveys. The channel distance used for range line location is the original river channel distance from the dam to each range line in an upstream direction on Pond Creek and from the confluence to each range line in an upstream direction on Willow Creek.

Lateral Distribution

The original survey notes or coordinate data were not available, so for this study, the original range line data were determined by scaling off break points from plots of the original range lines. Plan and profile plots of 23 original Fort Cobb range lines were available on Reclamation Drawing Numbers 853-522-95 through 853-522-117. Ground profiles for the original surveyed sediment ranges are shown on figures 8 through 22. The 1993 range profile data are superimposed on these plots to indicate the changes which have occurred and to represent in general the lateral distribution of sediment within the reservoir from elevation 1375.0 and below. Modification to the 1993 data included shifting stations slightly to better align features. For sediment computation purposes, a complete section was needed for all ranges. For this reason, the original data were inserted into the 1993 data file to complete the areas not surveyed in 1993.

REFERENCES

- American Society of Civil Engineers, *Nomenclature for Hydraulics*, ASCE Headquarters, New York, 1962.
- Blanton, J.O. III, "Procedures for Monitoring Reservoir Sedimentation: Technical Guideline for Bureau of Reclamation," Denver Office, Denver, CO, October 1982.

Bureau of Reclamation, Project Data, Denver Office, Denver, CO, 1981.

- Bureau of Reclamation, Surface Water Branch, ACAP85 User's Manual, Denver Office, Denver, Colorado, 1985.
- Bureau of Reclamation, Guide for Preparation of Standing Operating Procedures for Bureau of Reclamation Dams and Reservoirs, U.S. Government Printing Office, Denver, CO, 1987a.
- Bureau of Reclamation, *Design of Small Dams*, U.S. Government Printing Office, Denver, CO, 1987b.

Bureau of Reclamation, Fort Cobb Reservoir Area and Capacity Tables, Washita Basin Project, Great Plains Region, Denver, CO, April 1993.

Kansas Geological Survey, SURFACE II GRAPHICS SYSTEM, Lawrence, Kansas, 1978.

RESERVOIR SEDIMENT DATA SUMMARY

Fort Cobb Reservoir

$\underline{1}$ data sheet no.

D	1. OWNER Bureau	of Reclamation		2. STRE	EAM Pond (obb)	Creek	3.	STATE Okla	ahoma		
A	4. SEC. 22 TWP. 8N RANGE 12W				5. NEAREST P.O. Fort Cobb				6. COUNTY Caddo			
м	7. LAT 35° 09'				OF DAM EI				SPILLWAY CI		1354 81	
R	10. STORAGE	1 11. ELEVAT		2. ORIGI			ORIGINAL		ROSS STORAG		. DATE	
E	ALLOCATION	TOP OF POO		SURFACE A			CITY, AF		FEET		ORAGE	
S	a. SURCHARGE	1374.4	1	<u> </u>	422	1	48,650	2	92,390	BE	GAN	
E R	b. FLOOD CONTROL	1354.8			915		63,730		43,740			
v		1354.0		ວ,	915		05,750	1	43,740	3/	30/59	
0	c. POWER											
I R	d. WATER SUPPLY										. DATE RMAL	
7	e. IRRIGATION										ERATION	
	f. CONSERVATION	1342.0)	4,	070		78,346		80,010	BE	GAN	
	g. INACTIVE	1300.0)		340		1,664		1,644	6/	1962	
	17. LENGTH OF RE	SERVOIR	12.52		MILES	AVG.	WIDTH OF RES	ERVOIR		0.51	MILES	
В	18. TOTAL DRAINA	GE AREA	317	SQUA	RE MILES	22.	MEAN ANNUAL P	RECIPIT	TATION	234	INCHES	
A	19. NET SEDIMENT	CONTRIBUTING A	AREA 26	2 SQUA	RE MILES	23.	MEAN ANNUAL R	UNOFF	2.4	75	INCHES	
S I	20. LENGTH		AV. WIDTH	_	MILES	24.	MEAN ANNUAL R	UNOFF	41,7085		CRE-FEET	
Ň	21. MAX. ELEVATIO		MIN. ELEVAT	13 10 I 13	800		ANNUAL TEMP.					
ş	26. DATE OF	127. 28.	29. TYP		30. NO. O		31. SURFACE		. CAPACITY		C/I	
U	SURVEY -	PER. ACCL.		- Or	RANGES OR		AREA, AC.		RE-FEET		rio af/af	
R V		YRS. YRS.										
E	3/30/59		Contour	(D)	5-ft		5,915		142,864		3.42	
Y							(9,422)8		(291,432)8		6.99	
D	4/2/93	34.0 34.0	Range	(D)	15		5,882 ⁹		135,898 ⁹		3.26	
А							(9,421)	1	(284,079)		6.81	
T A	26. DATE OF SURVEY	34. PERIOD ANNUAL	35. PER	RIOD WATER INFLOW, ACRE			RE FEET		TER INFLOW	TO DATE	, AF	
		PRECIP.	a. MEAN	N ANN. b. MAX. AI		NN. C. TOTAL		а.	a. MEAN ANN.		TOTAL	
	4/93	23	41,7	08 ⁶	130,665 ⁶		1,418,069 ⁶		41,708 ⁶		.8,069 ⁶	
	26. DATE OF SURVEY	37. PERIOD CA	APACITY LOS	SS, ACRE-	FEET		38. TOTAL SEDIMENT DEPOSITS TO			TO DATE,	AF	
		a. TOTAL	b. AV.	ANN. c. /MI. ² -YR.			a. TOTAL	b.	AV. ANNUAL	. c. ,	MI. ² -YR.	
				I				I		I		
	4/93	6,966		204.9 0.782			6,966		204.9		0.782	
	-,	(7,353)		216.3)	(0.8)		(7,353)		(216.3		(0.825)	
	26. DATE OF	39. AV. DRY			ONS/MI.2-Y	- ,	41. STORAGE	LOSS			SEDIMENT	
	SURVEY	WT. $(\#/FT^3)$	40. 560	. DEF. 1	ON5/M1: -1	· ·	41. STORAGE	цоро, 1	EGI.		OW, PPM	
			a. PERI	OD I	b. TOTAL	ro	a. AV.	b.	TOTAL TO		Ъ.	
				1	DATE		ANNUAL	DAT	re	PER.	TOT.	
				1	DILLE							
		L		l	DITL							
			L	L								
1	4/93			I			0.143 ¹⁰		4.88 ¹⁰			
	4/93	L		I.					4.88 ¹⁰ (2.52)			
	4/93	L		I .			0.143 ¹⁰	J				
- 36				21 (212 - 211)			0.143 ¹⁰ (0.074)	I				
26. DATE	43. DEPTH DES	IGNATION RANGE	IN FEET BE	ELOW, AND		EST E	0.143 ¹⁰ (0.074)	I				
DATE OF	43. DEPTH DES 72.8- 59.8	- 49.8-		ELOW, ANI 29.8-) ABOVE, CI	EST E	0.143 ¹⁰ (0.074) CLEVATION 1354	I				
DATE	43. DEPTH DES 72.8- 59.8	- 49.8- 39.8	39.8- 24.8 2	29.8- 24.8	24.8- 19.8	19.8- 14.8	0.143 ¹⁰ (0.074) :LEVATION 1354 14.8- 9.8	.8 9.8- CREST	(2.52) CREST- +19.6			
DATE OF	43. DEPTH DES 72.8- 59.8	- 49.8- 39.8	39.8- 24.8 2	29.8- 24.8	24.8- 19.8	19.8- 14.8	0.143 ¹⁰ (0.074) CLEVATION 1354	.8 9.8- CREST	(2.52) CREST- +19.6			
DATE OF	43. DEPTH DES 72.8- 59.8 59.8 49.8	- 49.8- 39.8 PEF	39.8- 24.8 RCENT OF TC	29.8- 24.8	24.8- 19.8	19.8- 14.8	0.143 ¹⁰ (0.074) CLEVATION 1354 14.8- 9.8 THIN DEPTH DE	.8 9.8- CREST	(2.52) CREST- +19.6			
DATE OF SURVI 4/93	43. DEPTH DES 72.8-59.8 59.8 49.8 4.3 4.	49.8- 39.8 PER	39.8-2 24.82 RCENT OF TC 7.8	29.8- 24.8 DTAL SEDI 10.3	24.8- 19.8 MENT LOCAT 14.6	19.8- 14.8 ED WI 21.5	0.143 ¹⁰ (0.074) CLEVATION 1354 14.8- 9.8 THIN DEPTH DE. 5 19.2	.8 9.8- CREST SIGNATI	(2.52) CREST- +19.6			
DATE OF SURVI 4/93 26. DATE	43. DEPTH DES 72.8-59.8 59.8 49.8 4.3 4. 44. REACH DES	- 49.8- 39.8 PER 4 3.9 IGNATION PERCEN	39.8- 24.8 24.8 2 RCENT OF TO 7.8 NT OF TOTAL	29.8- 24.8 27AL SEDI 10.3 . ORIGINA	D ABOVE, CH 24.8- 19.8 MENT LOCAT 14.6 AL LENGTH C	19.8- 14.8 ED WI 21.5 F RES	0.143 ¹⁰ (0.074) CLEVATION 1354 14.8- 9.8 THIN DEPTH DE. 5 19.2 ERVOIR	.8 9.8- CREST SIGNATI 8.7	(2.52) CREST- +19.6 ON 5.3			
DATE OF SURVI 4/93 26.	43. DEPTH DES 72.8-59.8 59.8 49.8 4.3 4. 44. REACH DES 0-10 10- 20	49.8- 39.8 PER	39.8- 24.8 2 RCENT OF TC 7.8 NT OF TOTAL 40- 5	29.8- 24.8 27AL SEDI 10.3 . ORIGINA	24.8- 19.8 MENT LOCAT 14.6	19.8- 14.8 ED WI 21.5 F RES 80	0.143 ¹⁰ (0.074) CLEVATION 1354 14.8- 9.8 THIN DEPTH DE. 5 19.2 ERVOIR	.8 9.8- CREST SIGNATI	(2.52) CREST- +19.6			

Table 1. - Reservoir sediment data summary (page 1 of 2).

N/A

PERCENT OF TOTAL SEDIMENT LOCATED WITHIN REACH DESIGNATION

	RESERVOIR OPER		11 1 1000 000		EAR	MAY	ELEV.	MIN. ELEV.	INFLOW, AF
WATER YEAR	MAX. ELEV. 11						1330.3	1323.1	30,026
1959	1318.6	1279.			960			1342.1	19,952
1961	1338.1	1332.		IL	962		1338.5 1342.2	1342.1	10,608
1963	1342.2	1340.			964		1342.2	1340.7	16,347
1965	1345.3	1340.			966 968		1342.2	1341.1	27,968
1967	1342.0	1340.			970		1342.3	1338.8	21,826
1969	1342.2	1340.		-	970		1340.7	1335.5	19,550
1971	1338.5	1337.			972	L	1343.2	1335.5	37,236
1973	1342.0	1335.			974 976		1343.1	1340.3	30,922
1975	1344.5	1341.			978		1342.8	1339.8	28,321
1977	1346.7	1340.			980		1342.0	1338.4	40,497
1979	1341.3	1338.			980		1349.3	1337.2	72,399
1981	1339.4				984		1343.3	1338.0	33,784
1983	1342.9	1340.			986		1346.6	1338.1	62,679
1985	1340.0				988		1343.6	1340.5	59,932
1987	1349.1	1342.			990		1344.4	1341.8	130,665
1989	1343.9	1341.			992		1342.5	1341.8	60,151
1991	1342.8	1341.					+J 74 + J	1931.0	
1993 ¹²	1342.7 ON - AREA - CAE	1341.			·	L			
ELEVATION		CAPACITY	ELEVATION	AREA	CAPACIT	Y I	ELEVATION	AREA	CAPACITY
1279	0	0	1280	1		0	1285	11	30
1290	30	133	1295	133		540	1300	350	1,748
1305	557	4,015	1310	872	7,	588	1315	1,169	12,690
1320	1,548	19,483	1325	2,013	28,	385	1330	2,516	39,708
1335	3,175	53,935	1340	3,844	71,	483	1342	4,109	79,436
1345	4,506	92,358	1350	5,111	116,	400	1354.8	5,915	142,864
1355	5,949	144,050	1360	6,728	175,	743	1365	7,623	211,620
1370	8,516	251,968	1375	9,546	297,	123			
46. ELEVATI	ON - AREA - CAL	PACITY DATA F	OR 1993 CAPAC	CITY					
ELEVATION		CAPACITY	ELEVATION	AREA	CAPACIT	ΓY	ELEVATION		CAPACITY
1290 -	0	0	1295	90.4		226	1300	323.1	1,260
1305	524.4	3,378	1310	848.3	6,8		1315	1,132.1	11,761
1320	1,513.9	18,376	1325	1,890.8	26,8		1330	2,334.5	37,451
1335	2,926.5	50,604	1340	3,459.0	66,5		1342	3,806	73,833
1345	4,327.5	86,034	1350	5,087.6	109,5	1	1354.8	5,882	135,898
1355	5,915	137,078	1360	6,704	168,6		1365	7,602.3	204,391
1370	8,501.3	244,650	1374.4	9,421	284,0)79			
47. REMARKS	AND REFERENCES								
1 Crest ele	evation of morn	ing-glory in	let structure	with ungate	d crest.				
² Total ler	ngth includes P	ond (Cobb) C	reek, Willow	Creek and La	(e Creek a	at ele	vation 134	2.0.	
³ Bureau of portions	f Reclamation 1 totaling 51 squ	.956 flood st uare miles as	udy measured considered m	total draina noncontributi	ge area ab ng.	ove F	ork Cobb Da	am as 317 squar	e miles with
⁴ Bureau o:	f Reclamation F	Project Data	Book, 1981.						
	ed from mean an								
	ted monthly inf area and capaci							algulated to co	nform to
current c	omputational me	ethods using	Bureau of Red	clamation pro	gram ACAP	·	pacity rec	arculaced to et	inform co
	es enclosed in								_
	area and capaci on program ACAI		ion 1354.8, s	pillway cres	:. Area a	and ca	pacity cal	culated by Bure	eau of
¹⁰ Average a and 291,4	annual and tota 32 acre-feet, d	al sediment d original capa	eposits divid city at eleva	led by 142,86 ation 1374.4.	4 acre-fee	et, or	iginal cap	acity at elevat	ion 1354.8,
11 End-of-mo	onth elevations	s from USGS p	ublications,	by water yea	r.				
¹² For water	r year 1993 fro	m October 19	92 through Ma	rch 1993.					
¹³ Original	area and capac	ity recalcul	ated for the	1993 sedimen	ation stu	ıdy us	ing ACAP.		
48 AGENCY M	AKING SURVEY H	Bureau of Rec	lamation						

Table 1. - Reservoir sediment data summary (page 2 of 2).

.

,

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Elevation (feet)	Original Area (acres)	Original Capacity (acre-feet)	• 1993 Area (acres)	1993 Capacity (acre-feet)	Measured Sediment Volume (acre-feet)	Percent Measured Sediment	Percent Reservoir Depth
1374.4	9,422	291,432	9,421	284,079	7,353	100.0	100.0
1370	8,516	251,968	8,501.3	244,650	7,318	99.5	95.4
1365	7,623	211,620	7,602.3	204,391	7,229	98.3	90.1
1360	6,728	175,743	6,704.0	168,625	7,118	96.8	84.9
1355	5,949	144,050	5,915.0	137,078	6,972	94.8	79.7
1354.8	5,915	142,864	5,882	135,898	6,966	94.7	79.4
1350	5,111	116,400	5,087.6	109,571	6,829	92.9	74.4
1345	4,506	92,358	4,327.5	86,034	6,324	86.0	69.2
1342	4,109	79,436	3,806	73,833	5,603	7 <i>6</i> .2	66.0
1340	3,844	71,483	3,459.0	66,567	4,916	66.8	63.9
1335	3,175	53,935	2,926.5	50,604	3,331	45.3	58.7
1330	2,516	39,708	2,334.5	37,451	2,257	30.7	53.4
1325	2,013	28,385	1,890.8	26,888	1,497	20.4	48.2
1320	1,548	19,483	1,513.9	18,376	1,107	15.0	43.0
1315	1,169	12,690	1,132.1	11,761	929	12.6	37.7
1310	872	7,588	848.3	6,810	778	10.6	32.5
1305	557	4,015	524.4	3,378	637	8.7	27.2
1300	350	1,748	323.1	1,260	488	6.6	22.0
1295	133	540	90.4	226	314	4.3	16.8
1290	30	133	0	0	133	1.8	11.5
1285	11	30	0	0	30	0.4	6.3
1280	1	0	0	0	0	0.0	1.0
1279	۵	0	0	0	0	0.0	0.0

(1) Elevation of reservoir water surface.

(2) Original reservoir surface area.

· · ·

ī.,

r

(3) Original calculated reservoir capacity computed using ACAP from original measured surface areas.

(4) Reservoir surface area from 1993 survey.

(5) 1993 calculated reservoir capacity computed using ACAP from 1993 surface areas.

(6) Measured sediment volume = column (3) - column (5).

(7) Measured sediment expressed in percentage of total sediment (7,353).

(8) Depth of reservoir expressed in percentage of total depth (95.4 feet).

Digitized areas in acres for segments of Fort Cobb Reservoir.

.

SEGMENT	1375.0	1370.0	1365.0	1360.0	1355.0	1350.0	1345.0	1340.0	1335.0	1330.0	1325.0	1320.0	1315.0	1310.0	1305.0	1300.0	1295.0	1290.0	1285 0	1280.0
1	501.9	454.0	413.1	358 2	320.2	282.4	260.2	235.4	205.4	181.8	163.4	141.1	123.4	110 8	95 7	91.8	67.3	16 0	2.4	10
2	1363.1	1244.1	1148.3	1066 1	988.3	864.2	788.0	695.4	626.8	543.1	492.0	437.7	385.3	347.0	288 2	207.7	53.0	9.8	5.7	00
3	1261.2	1193 6	1124.1	1042.2	968.2	891.9	809.6	718.7	628.9	528.2	465.3	395.4	348.0	291.6	158 8	43.3	10.7	4.2	29	00
4	1213.7	1109.2	1002 8	918.1	832.4	781.1	718.0	637.9	578.4	506.5	438.3	377.0	295.3	112.6	13.1	7.2	2.1	00	0.0	00
5	973.0	662.1	819.9	733.0	675.7	631.0	587.7	532.3	487.0	430.9	381.5	190.9	10.1	10.1	0.4	00	0.0	0.0	00	00
ė	1048 1	927.6	841.5	768 1	683.1	593.4	542.4	491.3	425.9	253.2	55.9	5.9	3.0	00	00	00	00	0.0	00	00
7	988.6	917.8	844.6	777.8	701.5	644.2	570.0	361.7	112.0	6.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	00
6	547.1	494.0	439.8	398 0	312.5	100.8	15.7	8.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	00	00
9	435.0	351.7	227.1	66 5	17.5	5.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 00
10	67.5	16 8	11.0	50	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	00
11	24.7	10.7	3.3	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0
20	218.2	191.1	169.0	155 2	138.3	121.9	107.8	92.4	80.4	60 5	16.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0
21	173 8	160.0	140.2	128.7	113.2	99.8	78.6	52.4	29.7	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
22	185.6	143.4	112.8	76 2	39.0	16.0	0.8	· 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0
23	23.5	10.1	1.7	00	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	248.6	223.6	195.9	175.2	148.9	76.8	29.3	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
31	188.0	151.5	117.3	60.4	8.9	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
32	42.0	10.5	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
40	41.1	22.2	10.6	3.5	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	2.6	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0
TOTAL	9548.0	6516.0	7623.0	6728.0	5949.0	5111.0	4508.0	3844.0	3175.0	2518.0	2013.0	1548.0	1189.0	872.0	557.0	350.0	133.0	30.0	11.0	1.0

ELEVATION

.

1 . . .

.

·

. . .

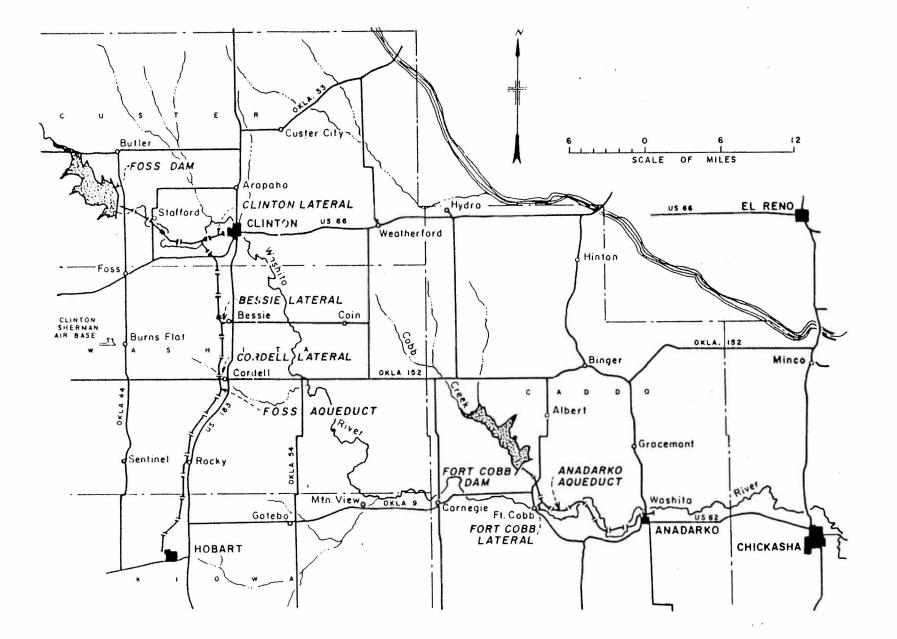
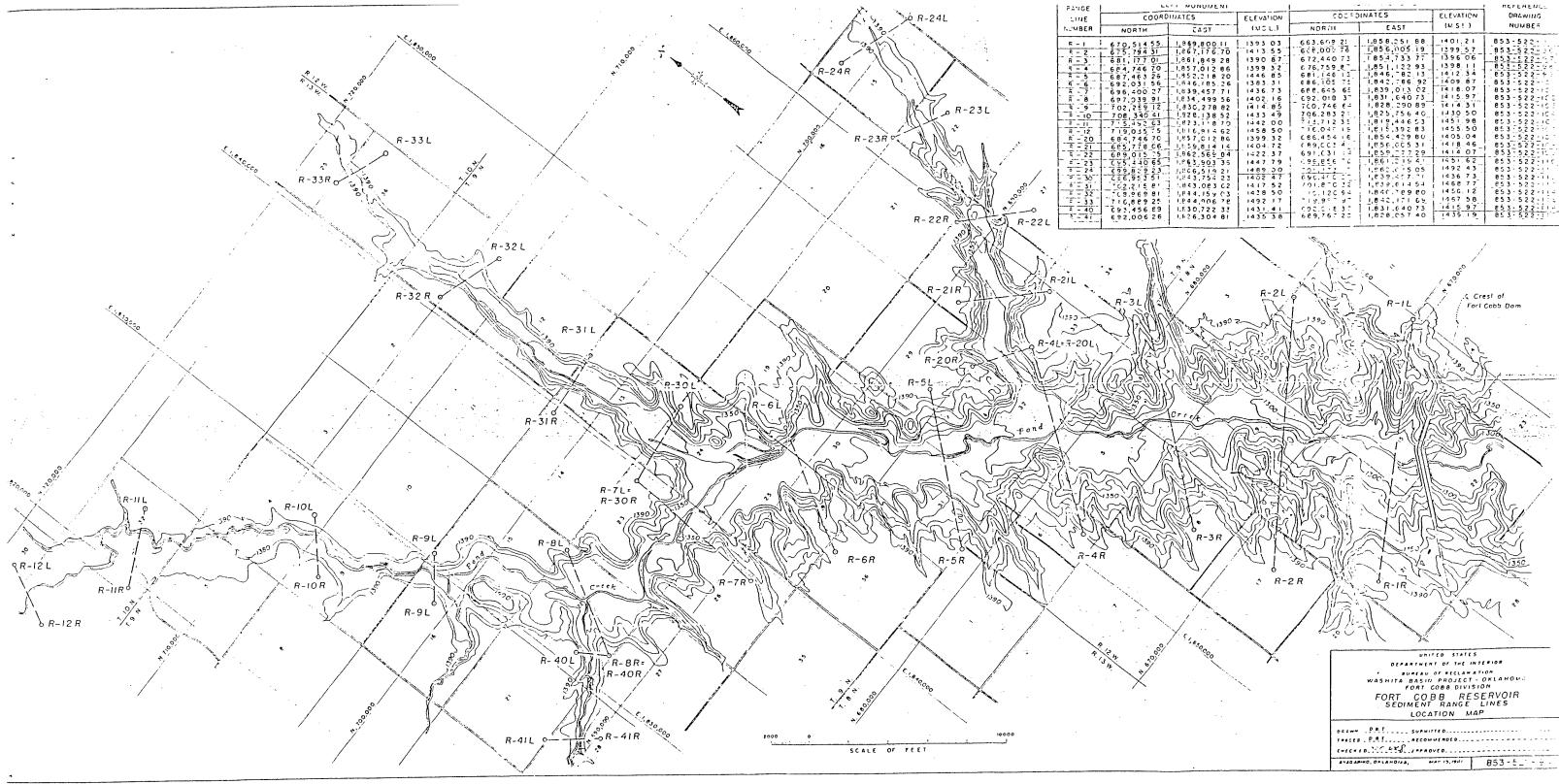
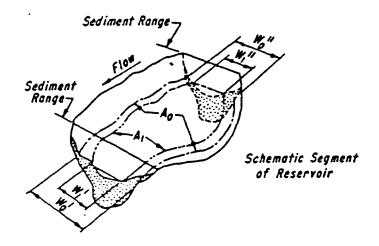
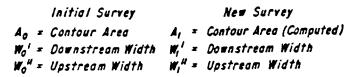



Figure 1. - Fort Cobb Reservoir location map.


Space intentionally left blank due to security concerns



. . .

	TI MUNUMENI			REFERENCE		
DORD	HATES	ELEVATION	00070	INATES	ELEVATION	DRAWING
	EAST	(MCL)	NORAL	EAST	(M.S!)	NUMBE=
55 31 70 55 31 70 55 91 12 13 57 53 57 53 57 55 57 55 57 55 57 55 57 55 57 57	1,9 69,8 00,11 1,8 69,8 00,11 1,8 67,17 6,70 1,8 61,8 29,28 1,8 57,01 2,8 6 1,8 52,21 8,20 1,8 39,457,71 1,8 34,499,56 1,3 26,278,82 1,8 2,278,82 1,8 2,8 1,3 8,52 1,8 2,8 1,3 8,52 1,8 2,8 1,3 8,52 1,8 2,5 6 1,8 1,8 1,8 2,5 1,8 62,5 6 1,8 6 1,8 6 1,8 6 1,8 6 1,8 6 1,8 6 1,8 6 1,8 7 1,8 6 1,8 7 1,8 6 1,8 7 1,8 6 1,8 7 1,8 7 1,8 6 1,8 7 1,8 6 1,8 7 1,8 7 1,8 6 1,8 7 1,8	$\begin{array}{c} 1395 & 0.3 \\ 1413 & 55 \\ 1390 & 67 \\ 1599 & 32 \\ 1446 & 65 \\ 1402 & 16 \\ 1436 & 73 \\ 1436 & 73 \\ 1436 & 73 \\ 1436 & 73 \\ 1432 & 16 \\ 1433 & 49 \\ 1432 & 30 \\ 1436 & 72 \\ 1422 & 37 \\ 1458 & 50 \\ 1497 & 247 \\ 1417 & 52 \\ 1428 & 50 \\ 1492 & 17 \\ 1435 & 38$	663.67.9 2! 628.00576 672.440776 681.12612 681.12612 686.15574 688.64565 692.01837 760.28321 770.2852100000000000000000000000000000000000	$\begin{array}{c} 1,858,251,88\\ 1,856,005,19\\ 1,856,005,19\\ 1,856,005,19\\ 1,851,122,93\\ 1,846,182,13\\ 1,842,186,182,13\\ 1,842,186,90,13\\ 1,828,290,89\\ 1,825,756,40\\ 1,818,290,89\\ 1,825,756,40\\ 1,818,290,89\\ 1,825,756,40\\ 1,819,446,23\\ 1,815,392,83\\ 1,856,605,31\\ 1,856,605,31\\ 1,856,605,31\\ 1,859,177,29\\ 1,856,153,263\\ 1,856,255,31\\ 1,859,257,172,29\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,175,19\\ 1,857,19,19\\ 1,857,1$	$\begin{array}{c} 14\ 01\ ,2\ 1\\ 13\ 99\ 5.7\\ 13\ 96\ 06\\ 13\ 98\ 11\\ 14\ 12\ 34\\ 14\ 05\ 04\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 18\ 07\\ 14\ 07\\ 14\ 18\ 07\\ 14\ 07\ 07\\ 14\ 07\ 07\\ 14\ 07\ 07\\ 14\ 07\ 07\\ 14\ 07\ 07\\ 14\ 07\ 07\ 07\ 07\ 07\ 07\ 07\ 07\ 07\ 07$	
				1	l .	1

WIDTH ADJUSTMENT METHOD FOR REVISING CONTOUR AREAS IN COMPUTATION OF RESERVOIR SEDIMENTATION

$$A_{1} = A_{0} \left(\frac{\frac{W_{1}' + W_{1}''}{2}}{\frac{W_{0}' + W_{0}''}{2}} \right)$$

Figure 4. - Width adjustment method for revising contour areas.

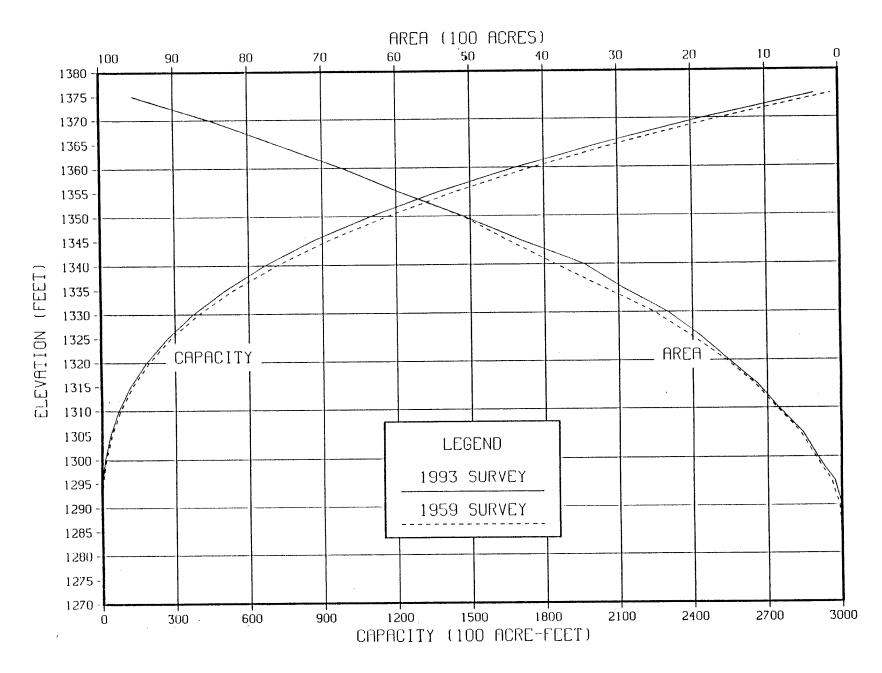
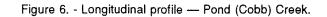


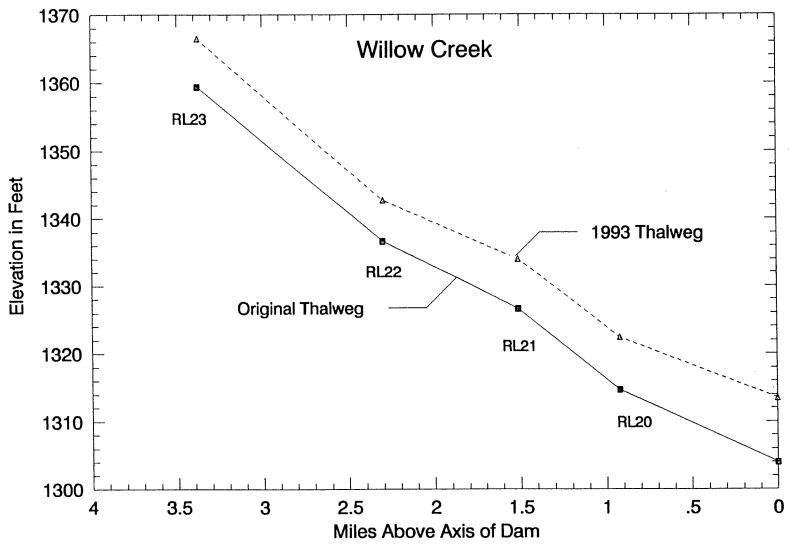
Figure 5. - Area and capacity curves -- Fort Cobb Reservoir.

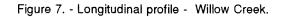
r

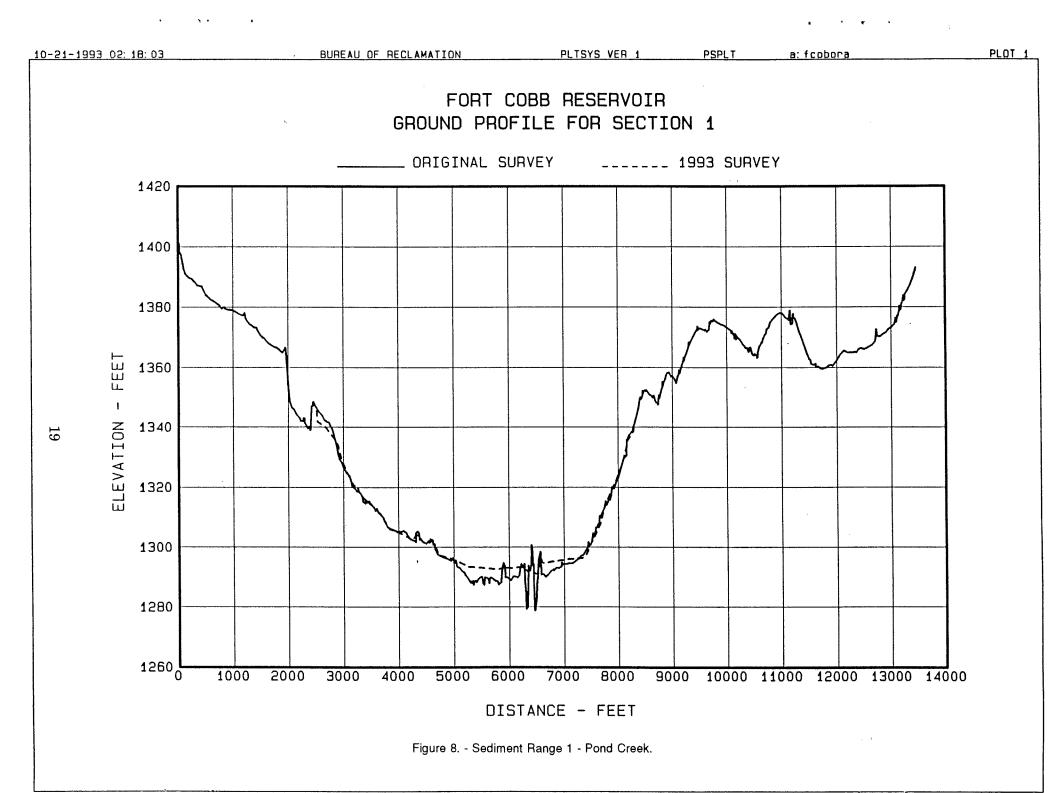
. . .

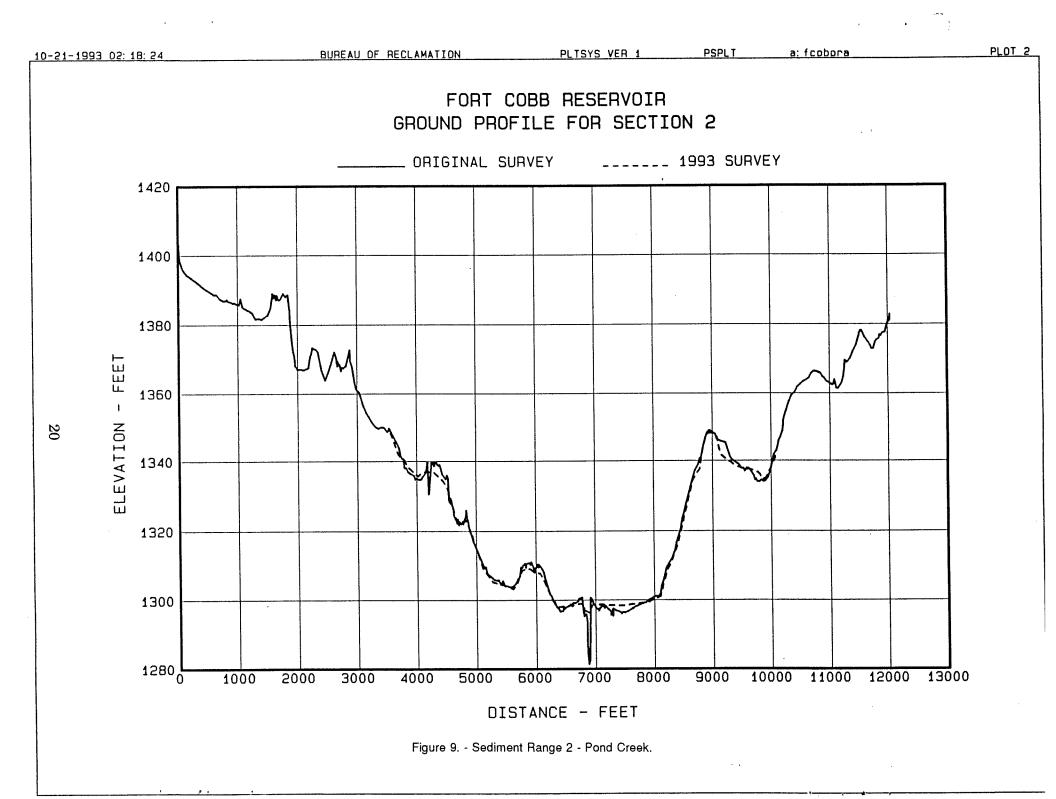

16

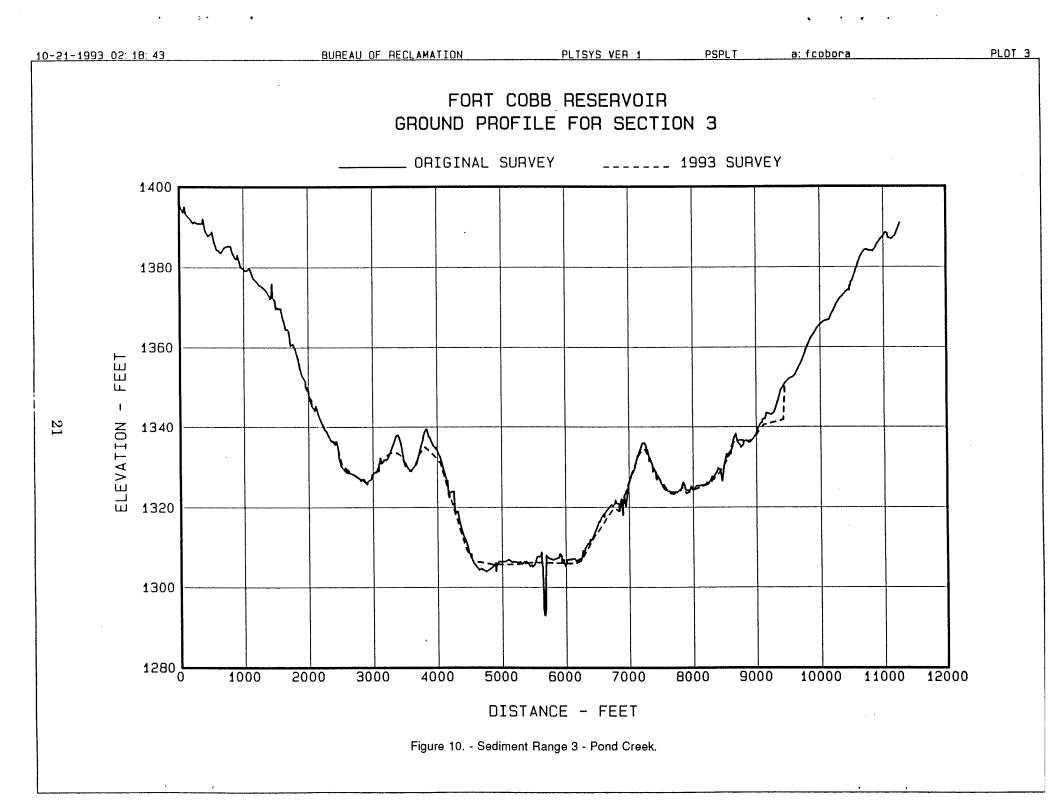
* .

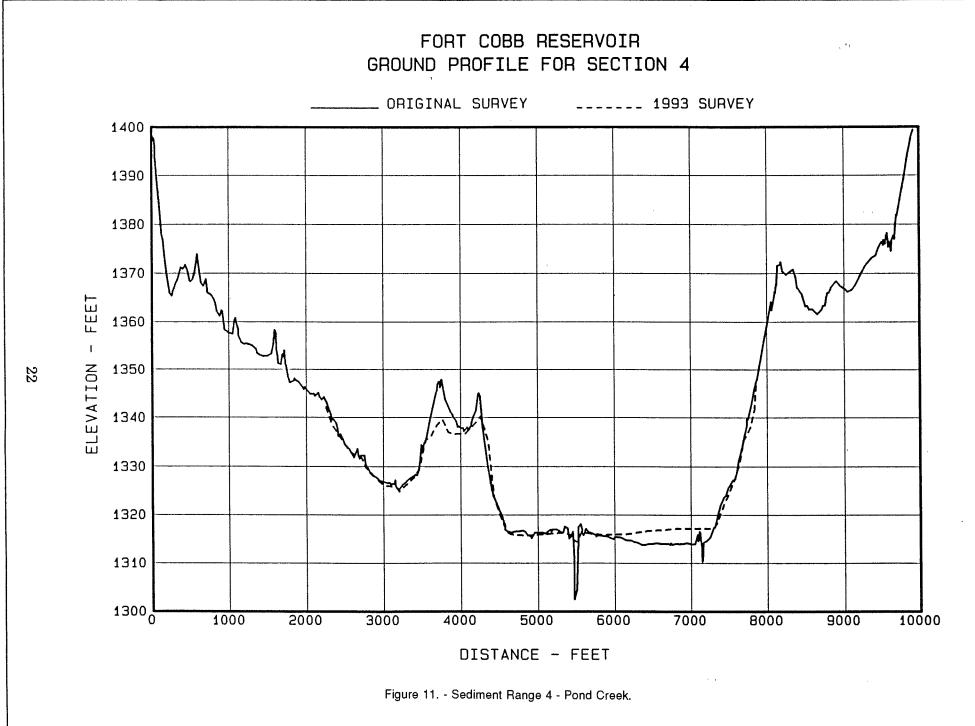

,

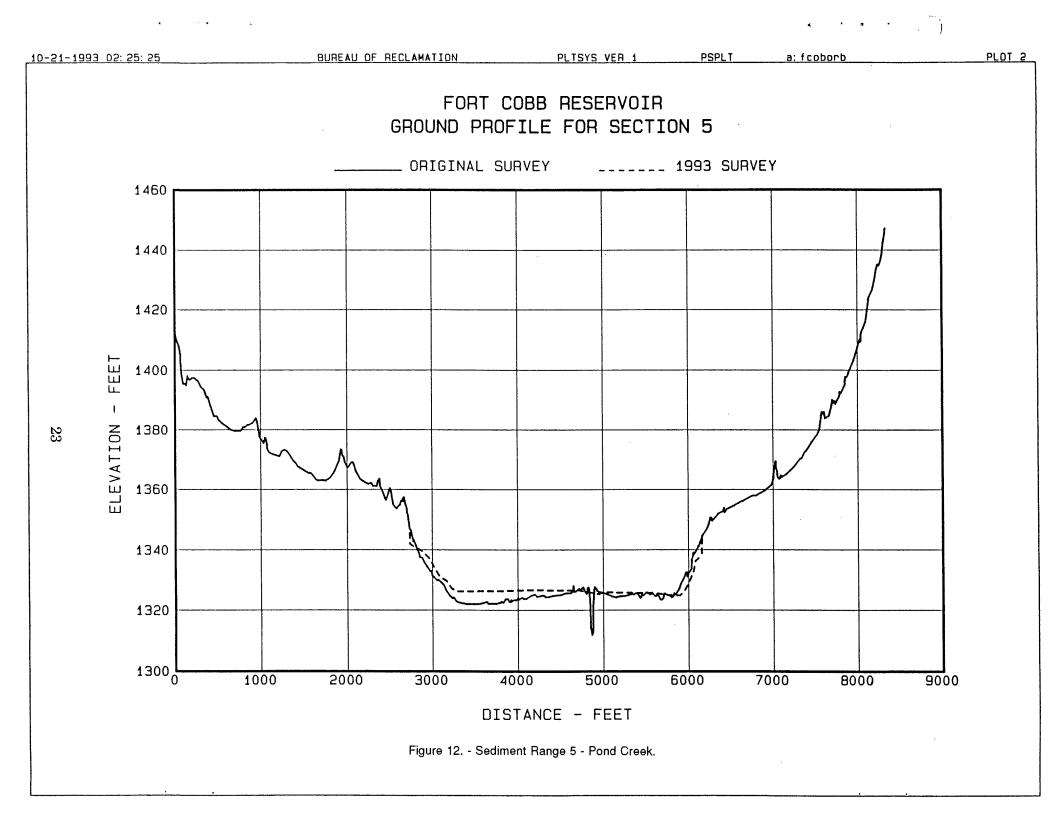

FORT COBB RESERVOIR SEDIMENT SURVEY

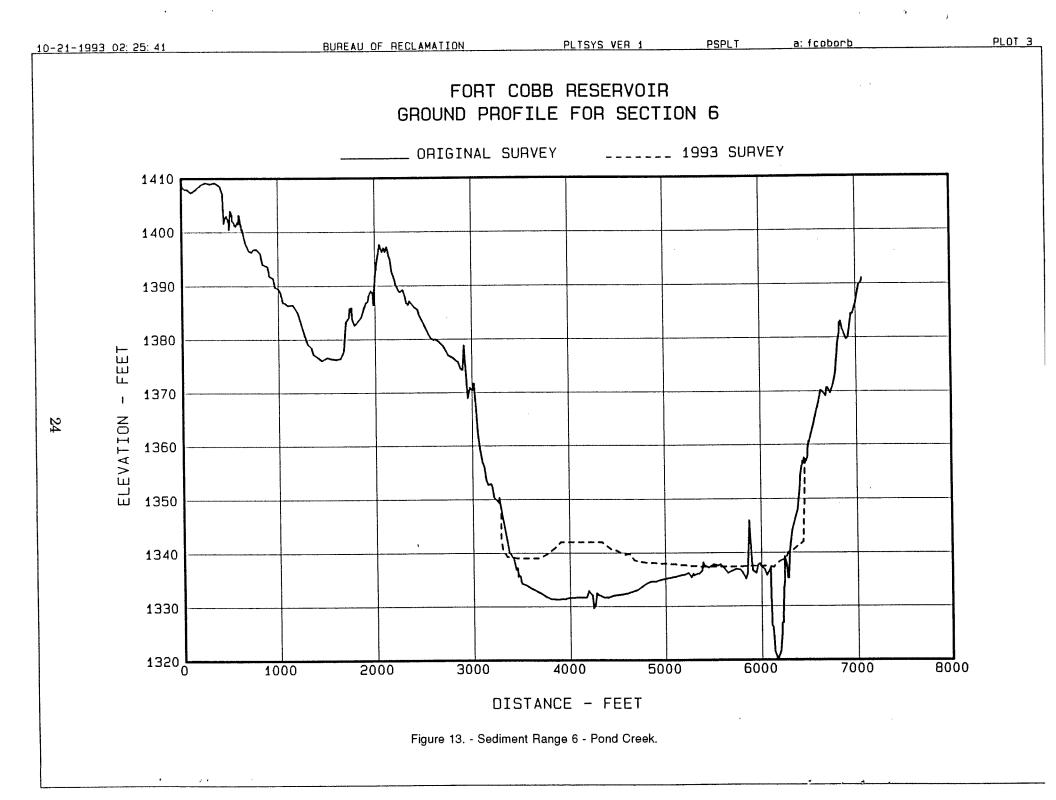


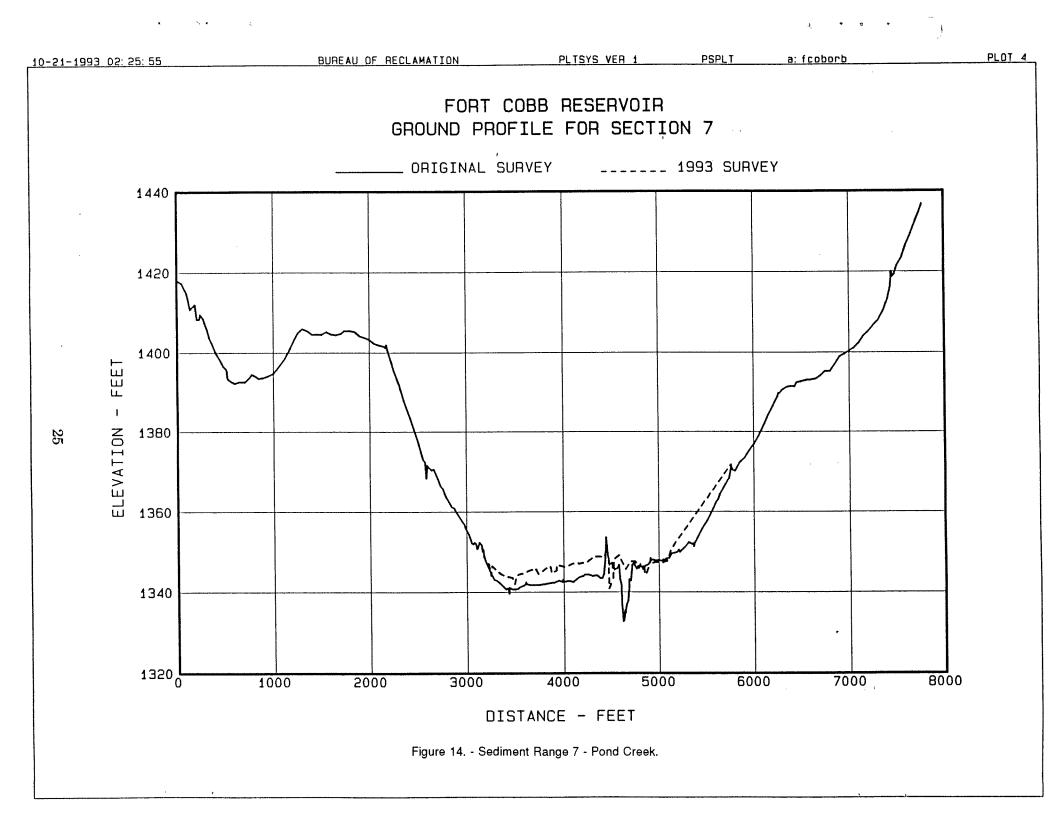


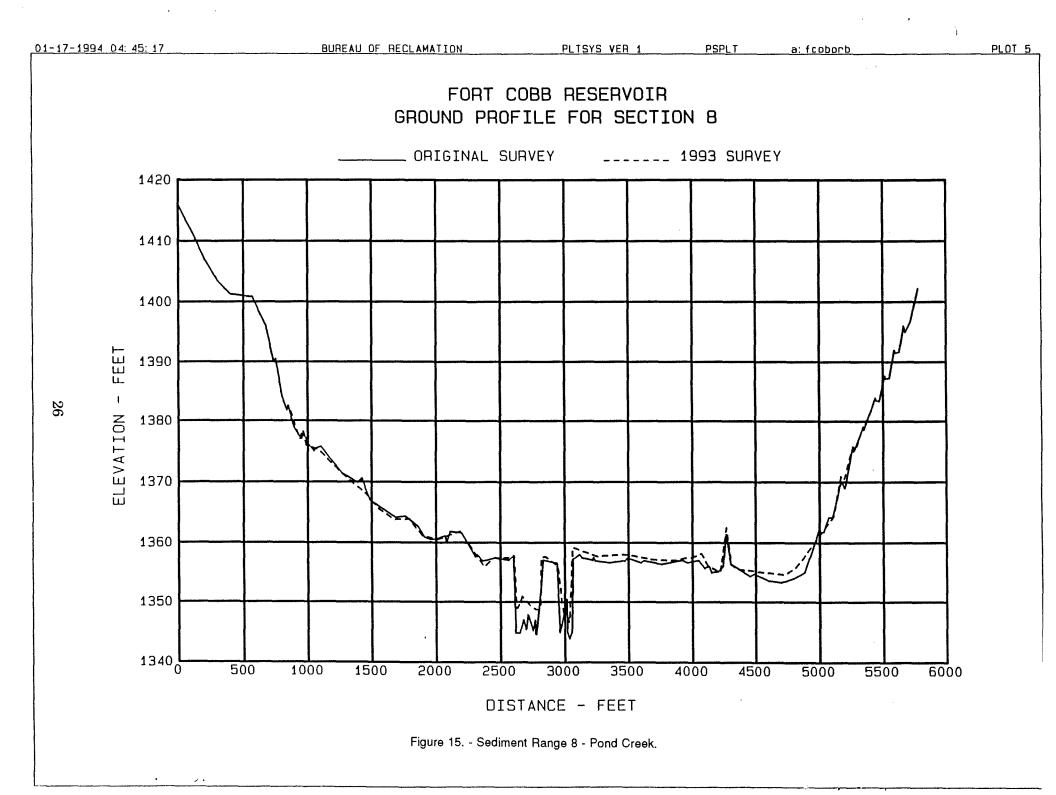

FORT COBB RESERVOIR SEDIMENT SURVEY

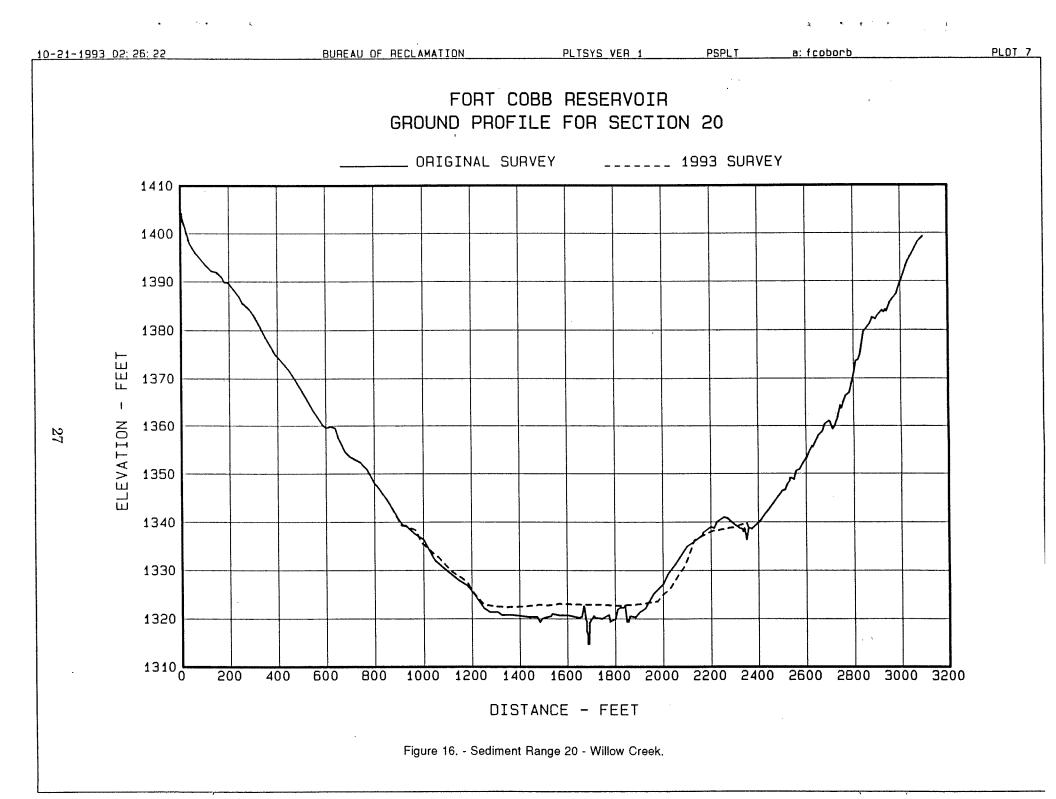


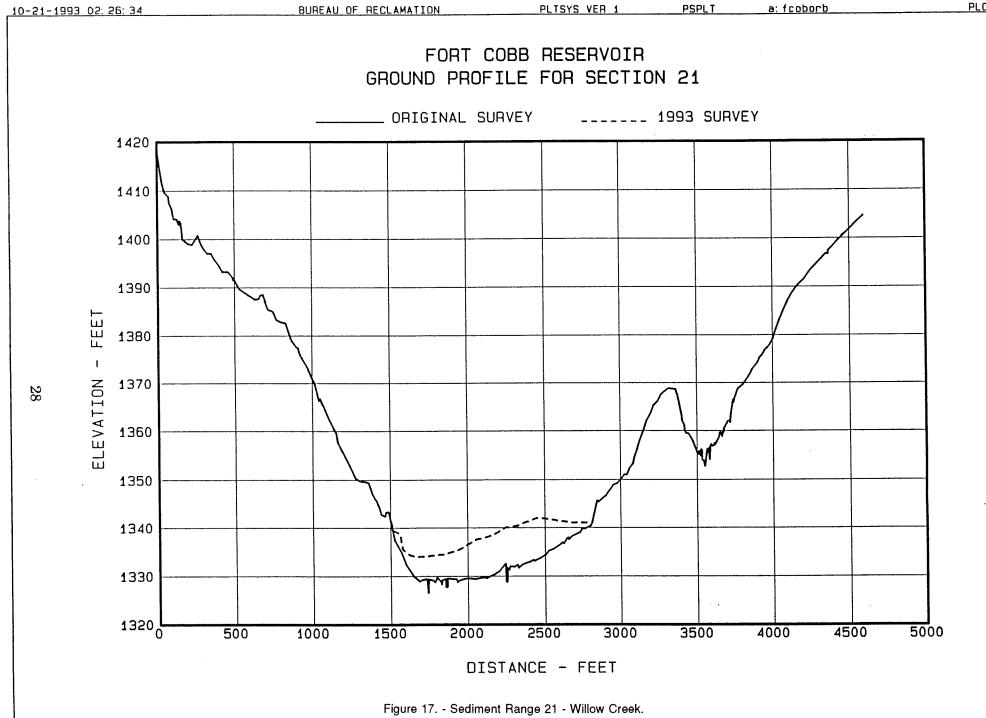


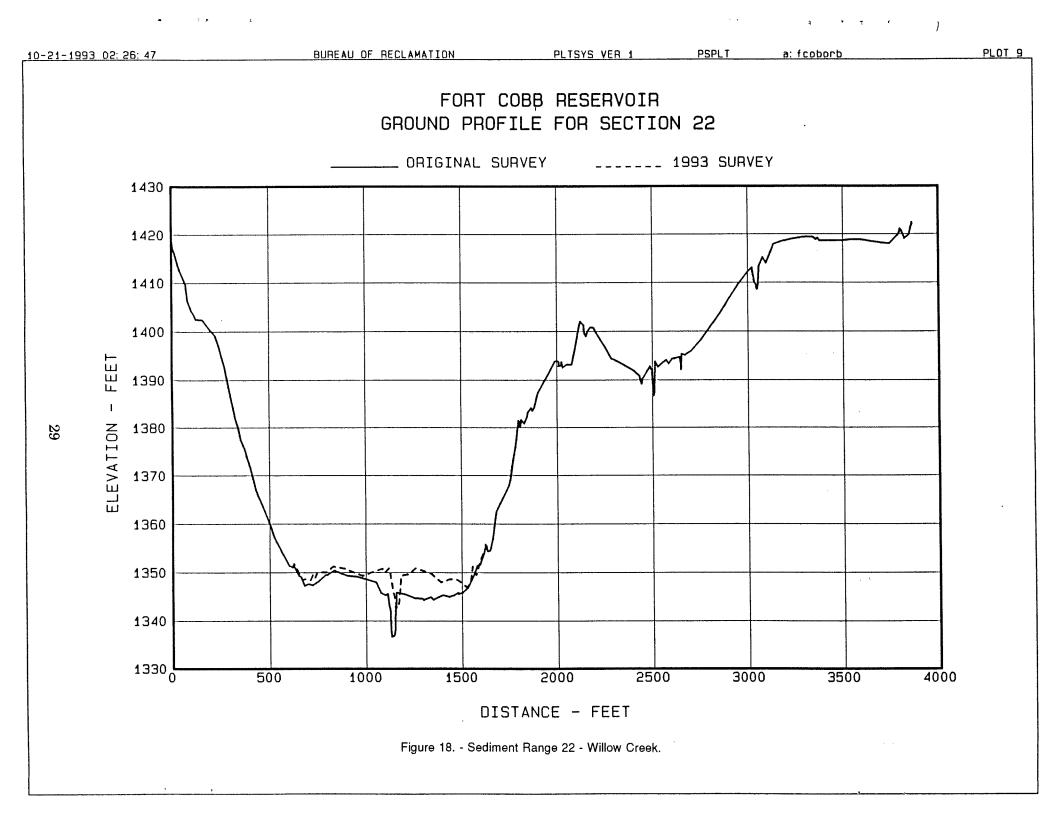

· · · · }

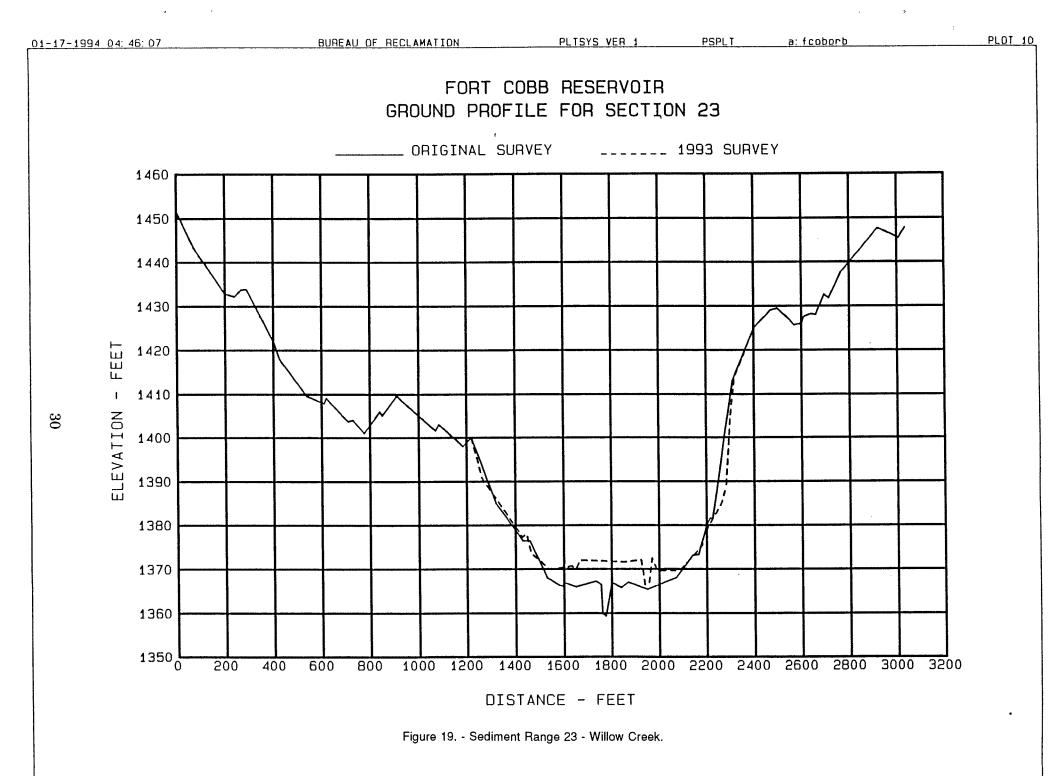

PLOT 1

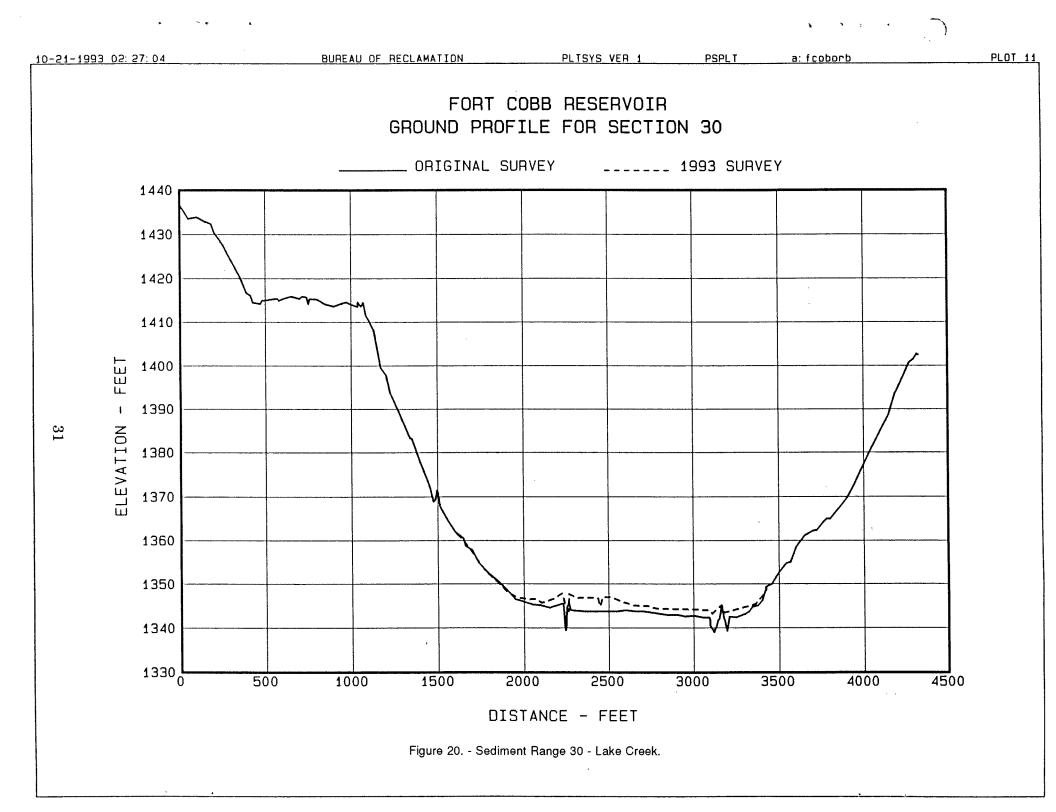

.

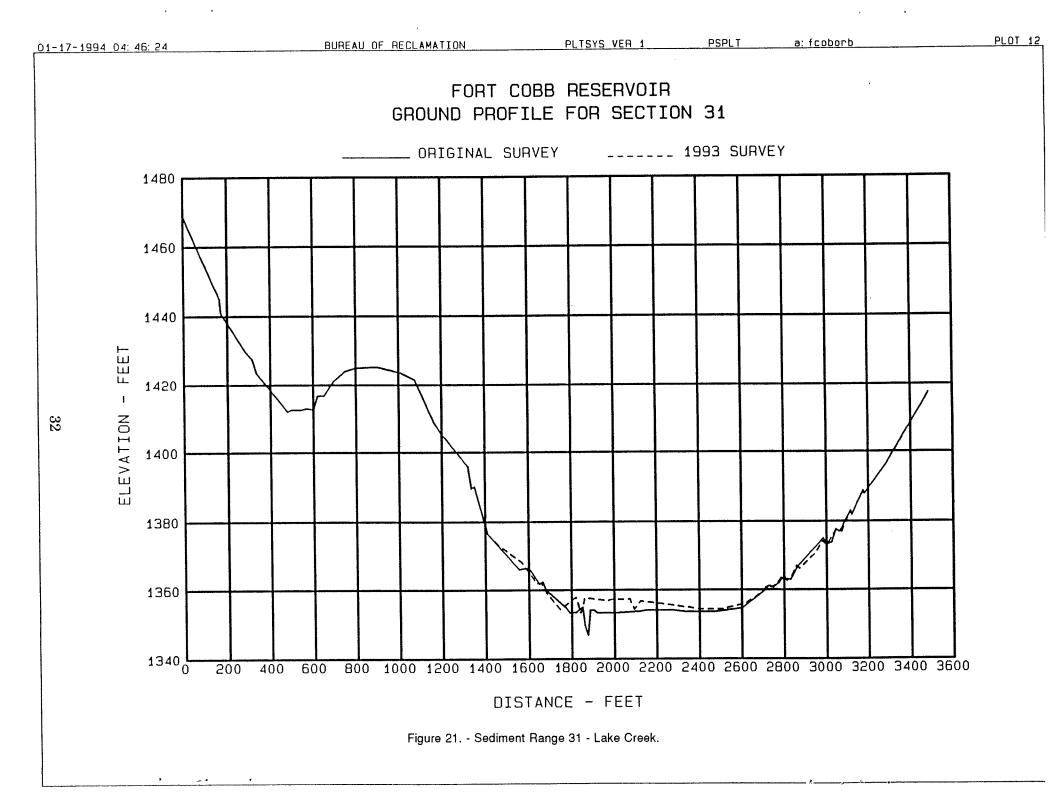


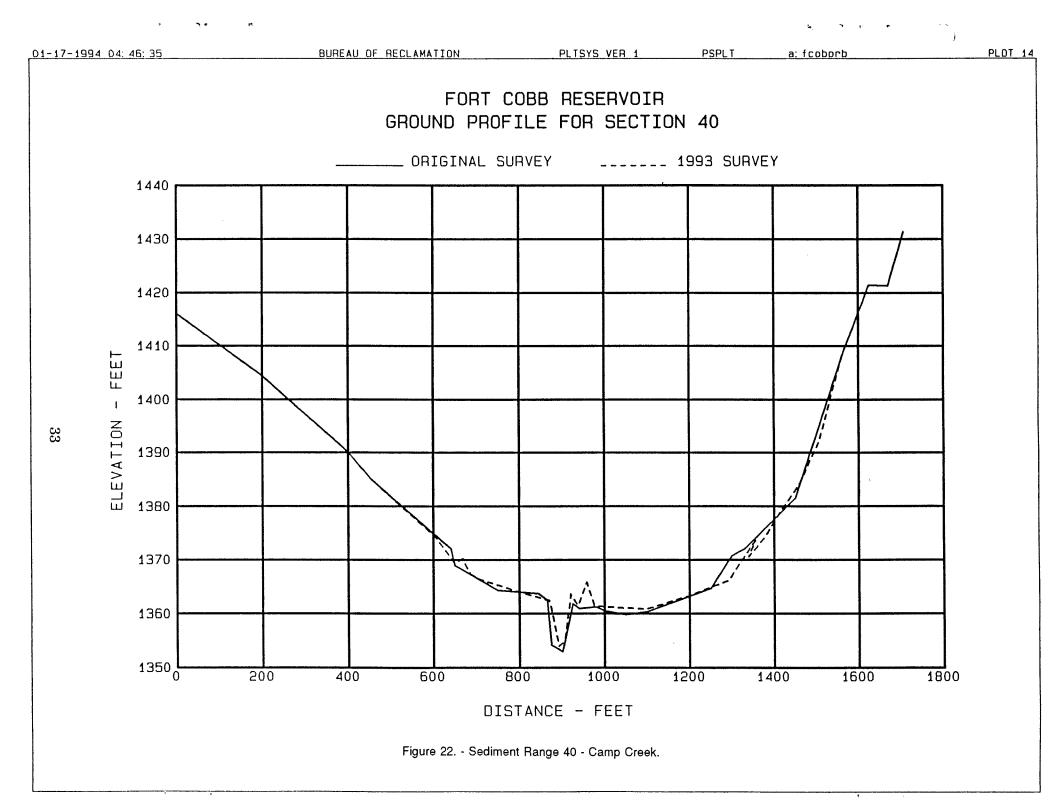







۰. ۴


.


PLOT B

• ٠ ٠ -¥ i •

•

Mission

.

.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American Public.

f

¥ 5 1 •1 ŧ